

General Protocol for SVAPOVA™

Contents

Introduction	1
Characteristics of SCAPOVA™	2
Reagents and Equipment	3
Human Mesenchymal Stem Cell Culture Using SCAPOVA™ CL	
Preparation of SCAPOVA™ CL	5
Cell Seeding	6
Cell Observation	
Cell Counting	7
Cell Harvesting	8
Option: Bead-to-bead cell transfer	

Introduction

This protocol is intended for small-scale cell cultures to use in the conduct of laboratory research. Professor Akira Ito (Nagoya University) and Kuraray jointly developed human Mesenchymal Stem Cell (hMSC) culture system using SCAPOVA™, which is Polyvinal alcohol, PVA, microcarrier produced by Kuraray Co., Ltd.

If you intend to make large-scale cell cultures for industrial purpose, such as mesenchymal stem cell culture for regenerative medicine and clinical purposes, or vaccine production, please contact us at "Contact.LIPG@kuraray.com". Please note these following are general procedures and methods. Please consider optimizing the culture conditions depending on cells which you are using.

Characteristics of SCAPOVA™

- The material of SCAPOVA™ is hydrogel specifically developed from polyvinyl alcohol, PVA.
- Due to the elasticity and robustness, SCAPOVA™ is less to produce any debris during cell culture.
- SCAPOVA™ is highly transparent microcarrier. Cells on our microcarriers can be clearly observed using phase contrast microscope.
- SCAPOVA[™] CL is a PVA microcarrier with Collagen Type I coated surface. Thus, various cells can adhere and grow on SCAPOVA[™] CL.
- SCAPOVA[™] AS is a PVA microcarrier with activated surface for modifying cell adhesive materials by soaking, such as proteins, peptides, synthetic polymers, and others. SCAPOVA[™] AS is under development. Please contact us for the detail.

Table 1. Specifications of SCAPOVA™ CL

Particle size (diameter) ¹	200 - 250 μm
Surface area ²	Approx. 2600 cm²/g dry weight
Surface coating	Collagen type I
Relative density ¹	1.03 g/cm³
Swelling factor ³	Approx. 10 g wet weight / g dry weight

- 1. These values were measured in the swollen state.
- 2. The surface area of swollen microcarriers obtained by 1g of dry SCAPOVA™ CL.
- 3. The weight of swollen microcarriers divided by the weight of dry SCAPOVA™ CL.

Reagents and Equipment

SCAPOVA™ can be applied to various types of 3D culture systems.

Single-use bioreactor

Figure 1. Schematic illustrations of cell culture systems using $SCAPOVA^{TM}$.

Table 2. General reagents and equipment

reagents and equipment	Example
3D culture system	30 mL single-use bioreactor + 6 channel
	magnetic stirrer
	Vent cap + Erlenmeyer flask + shaking
	device
Cell	Various anchorage-dependent cell such as
	Mesenchymal Stem Cell and Fibroblast
Medium	Medium type depends on type of cell line or
	culture purpose
Cell dissociation reagent	0.05% or 0.25% Trypsin-EDTA
	Accutase®
Cell strainer	φ70μm or φ100μm cell strainer

Human Mesenchymal Stem Cell Culture Using SCAPOVA™ CL

The reagents, equipment, and culture conditions in the hMSC culture system are described in tables 3 and 4.

Table 3. Reagents and equipment for hMSC culture system

Product name	Cat. No.	Brand	
Single use bioreactor 30mL	BWV-So3A	ABLE Biott	
6ch magnetic stirrer	BWS-So3NoS-6	ABLE Biott	
hMSC - human	PT-2501	LONZA	
mesenchymal stem cells	1-2501		
MSCGM™ Mesenchymal Stem	PT-3001	LONZA	
Cell Growth Medium BulletKit™	F1-3001	LONZA	
Cell Stainer 70 µm	93070	SPL	
Accutase®	AT104	Innovative Cell	
Accutases		Technologies	

Table 4. Parameters for hMSC culture system

Medium volume	30 mL /bioreactor	
Amount of SCAPOVA™ CL	37 mg/bioreactor	
AMOUNT OF SCAPOVA CE	(108 cm² / bioreactor)	
Seeding cell number	5.4×10 ⁵ cells/bioreactor	
Agitation speed for cell	15 rpm	
adhesion (0-24 h)		
Agitation speed for cell	55 rpm	
expansion (1-7 d)		
Bead to bead cell transfer	Cell adhered microcarriers : fresh	
	microcarriers = 1:1	

Reference

Kaneko M, et al., Expansion of human mesenchymal stem cells on poly (vinyl alcohol) microcarriers. J Biosci Bioeng. 2023 Nov;136(5):407-414.

Preparation of SCAPOVA™ CL

SCAPOVA™ CL are ready to use out of the vial bottle. They swell easily in culture media. SCAPOVA™ CL are gamma irradiated. Two methods are described below.

Method A

- 1. Tare a 50ml conical tube.
- Weigh out the required amount of SCAPOVA™ CL into the tube.
 Note: Calculate the desired weight based on the desired surface area (see table 1).
- 3. Add culture medium into the tube and swell SCAPOVA™ CL for at least ten (10) minutes.
- 4. Transfer to a bioreactor or an Erlenmeyer flask with all culture media. Ex: When you culture cells in 30mL of culture medium, add microcarriers in 20mL of medium, and then add cells in 10mL of medium.

Method B

- 1. Transfer SCAPOVA™ CL from the bottle into a suitable size container carefully and add PBS (-).
 - Ex: 30-50 mL of PBS (-) is prefer for swelling 1g of dry SCAPOVA $^{\text{TM}}$ CL.
- 2. Disperse SCAPOVA™ CL evenly by pipetting and transfer the desired amount of SCAPOVA™ CL into a 15 mL conical tube.
 - Note 1: Calculate the desired volume of SCAPOVA™ CL based on the density of them in PBS (-).
 - Note 2: In PBS (-), SCAPOVA™ CL tend to stick on the wall of micropipette tips. We recommend coating the wall of the pipette tips with FBS containing medium (pipette 2 or 3 times before use). Glass pipettes can be used instead of plastic tips.

- Sediment SCAPOVA™ CL by standing or centrifugation (300×g, five (5) minutes, set the deceleration rate to the slowest) and remove the supernatant.
- 4. Add culture medium into the tube and transfer to a bioreactor or an Erlenmeyer flask for cell culture.
 - Ex: When you culture cells in 30mL of culture medium, add SCAPOVA™ CL in 20mL of medium, and then add cells in 10mL of medium.
- 5. SCAPOVA™ CL suspended in PBS (-) can be stored at 4°C. Using them within six (6) months is recommended.

Cell Seeding

The procedure of cell culture using bioreactor with SCAPOVA™ described.

- Transfer SCAPOVA[™] with 100-200cm² surface area into 30mLbioreactor.
 - Ex: Add SCAPOVA™ (surface area: 108 cm²) with 20mL of culture medium in 30 mL-bioreactor, then add cells with 10 mL of culture medium.
- 2. Seed cells to a final concentration of 4×10^4 1.2×10^5 cells/mL.
- 3. Place the bioreactor on the stirrer in incubator. (37°C, 5% CO_2 , humidified)
- 4. To allow cells to adhere to SCAPOVA™ microcarriers, culture cells for several hours in a static or slow agitation (15 rpm).
- 5. After twenty-four (24) hours, change the agitation speed to 50 rpm.
- 6. Change the half volume of medium every three (3) or four (4) days.
 - (1) Stand the bioreactor for five (5) minutes to sediment microcarriers.
 - (2) Remove the half volume of culture medium carefully not to lose microcarriers, then add fresh medium.

Cell Observation

- Transfer 500 µL 1 mL of culture medium containing SCAPOVA™ microcarriers from the bioreactor to a culture vessel (ex. 6-well microplate).
- 2. Observe attached cells on SCAPOVA™ using a phase contrast microscope.

Figure 2. Phase contrast image of fibroblast cells attached on SCAPOVA™ CL.

(This image is obtained with the development stage SCAPOVA™ CL which specification is different from the actual product.)

Cell Counting

Cell counting is recommended to ensure that cells are growing healthy on the SCAPOVA $^{\text{\tiny M}}$.

- Using pipette, mix SCAPOVA™ microcarriers to disperse uniformly in the bioreactor.
- 2. Collect 0.5 1 mL of culture medium containing SCAPOVA™.
- Detach cells from SCAPOVA™ and count the cell number.
 (Detail of cell harvesting is described in next section "Cell Harvesting").

Counting the cell number on SCAPOVA™ without cell harvesting is also possible by NucleoCounter NC-200 / NC-202 (ChemoMetec).

Figure 3. The growth curve of fibroblast cells on SCAPOVA™. (This data is obtained with the development stage SCAPOVA™ CL which specification is different from the actual product.)

Cell Harvesting

The method using trypsin-EDTA solution is described below. Use suitable cell detachment solution, such as Accutase®, depend on your culture conditions or purposes.

- 1. Add SCAPOVA™ microcarrier suspension to a 100 µm cell strainer placed on 50 mL conical tube.
- 2. Wash SCAPOVA™ with 10 mL of PBS (-).
- 3. Wash out SCAPOVA™ with 5 mL of 0.05% Trypsin-EDTA solution from cell strainer placed upside down on a new 50 mL tube or 60 mm dish. Note: Adjust the concentration and volume of trypsin-EDTA solution depending on the cell type and amount of microcarriers.
- 4. Incubate the tube containing SCAPOVA™ and trypsin-EDTA solution at 37°C in CO₂ incubator with shaking at 85 rpm for five (5) to ten (10) minutes.

Note: It is also possible to treat with trypsin while stirring in a bioreactor.

- 5. Stop the trypsin reaction by adding equal volume (5 mL) of fresh medium.
- 6. Detach cells from SCAPOVA™ by pipetting for two (2) to twenty (20) times.
- 7. Separate cells from SCAPOVA™ using cell strainer (70 µm or 100 µm).
- 8. Rinse SCAPOVA™ with 10 mL of medium.
- Collect cells by centrifugation (300×g, five (5) minutes).
 Note: Cell detachment should be confirmed by phase contrast microscopy.
- 10.Remove the supernatant and resuspend the cells in fresh medium.

Figure 4. Phase contrast image of SCAPOVA™ CL microcarriers after Trypsin-EDTA treatment.

(This data is obtained with the development stage SCAPOVA™ CL which specification is different from the actual product.)

Option: Bead-to-bead cell transfer

Using SCAPOVA™, bead-to-bead cell transfer can be possible. Adding fresh microcarriers into cell attached microcarriers, the cells transfer onto fresh microcarriers without trypsin-EDTA treatment. Bead-to-bead cell transfer is easy subculture method, but the efficiency depends on cell types. Representative method is described below.

- 1. Grow up cells on SCAPOVA™ over 80% confluent.
- 2. Collect one-sixth (1/6) to one-half (1/2) volume of cell attached microcarriers and transfer into a new bioreactor.
- 3. Add fresh microcarriers swollen in fresh media to the bioreactor. The final density of the fresh and cell attaching microcarriers is same with normal SCAPOVA™ culture.
 - For example: 1/6 cell attaching + 5/6 fresh or 1/2 cell attaching + 1/2 fresh microcarriers.
- 4. Culture cells as shown in "Cell Seeding" section, 4-6.

Figure 5. Fluorescent image of SCAPOVA™ CL after bead-to-bead cell transfer.

Fresh microcarriers were added to fibroblast cells attached microcarriers after four (4) days culture. After additional six (6) days culture, live cells were stained with Calcian-AM (Green). Cell attachment to most of microcarriers indicates that bead-to-bead cell transfer is occurred. (This data is obtained with the development stage SCAPOVA^MCL which specification is different from the actual product.)

Kuraray Co., Ltd. Tokiwabashi Tower, 2-6-4, Otemachi, Chiyoda-ku Tokyo, Japan

Contact

Life Innovation Promotion Group, Research and Development Division E-mail Contact.LIPG@kuraray.com

2024/10/25